Application of Auto Regressive Models of Wavelet Sub-bands for Classifying Terahertz Pulse Measurements

نویسندگان

  • XIAOXIA YIN
  • BRIAN W.-H. NG
چکیده

This paper presents an approach for automatic classification of pulsed Terahertz (THz), or T-ray, signals highlighting their potential in biomedical, pharmaceutical and security applications. T-ray classification systems supply a wealth of information about test samples and make possible the discrimination of heterogeneous layers within an object. In this paper, a novel technique involving the use of Auto Regressive (AR) and Auto Regressive Moving Average (ARMA) models on the wavelet transforms of measured T-ray pulse data is presented. Two example applications are examined — the classification of normal human bone (NHB) osteoblasts against human osteosarcoma (HOS) cells and the identification of six different powder samples. A variety of model types and orders are used to generate descriptive features for subsequent classification. Wavelet-based de-noising with soft threshold shrinkage is applied to the measured T-ray signals prior to modeling. For classification, a simple Mahalanobis distance classifier is used. After feature extraction, classification accuracy for cancerous and normal cell types is 93%, whereas for powders, it is 98%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of an Additive Self-tuning Controller for Static Synchronous Series Compensator for Damping of Sub-synchronous Resonance Oscillations

In this paper, an additive self-tuning (ST) control scheme is presented for a static synchronous series compensator (SSSC) to improve performance of conventional PI control system for damping sub-synchronous resonance (SSR) oscillations. The active and reactve series compensation are provided by a three-level 24-pulse SSSC and fixed capacitor. The proposed ST controller consists of a pole shift...

متن کامل

Change Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering

In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...

متن کامل

A Switchgrass-based Bioethanol Supply Chain Network Design Model under Auto-Regressive Moving Average Demand

Switchgrass is known as one of the best second-generation lignocellulosic biomasses for bioethanol production. Designing efficient switchgrass-based bioethanol supply chain (SBSC) is an essential requirement for commercializing the bioethanol production from switchgrass. This paper presents a mixed integer linear programming (MILP) model to design SBSC in which bioethanol demand is under auto-r...

متن کامل

Network Traffic Prediction Algorithm based on Wavelet Transform

The features of dynamic, noise and instability, make the network traffic eruptive and unstable, and this obstructs the network traffic prediction. In order to figure out its characteristics and developing tendency accurately, the paper proposes a wavelet-transform-based prediction algorithm: Firstly, with the multi-resolution analysis of wavelet transform, the network traffic, which is difficul...

متن کامل

Time series forecasting with the WARIMAX-GARCH method

It is well-known that causal forecasting methods that include appropriately chosen Exogenous Variables (EVs) very often present improved forecasting performances over univariate methods. However, in practice, EVs are usually difficult to obtain and in many cases are not available at all. In this paper, a new causal forecasting approach, called Wavelet Auto-Regressive Integrated Moving Average w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1991