Application of Auto Regressive Models of Wavelet Sub-bands for Classifying Terahertz Pulse Measurements
نویسندگان
چکیده
This paper presents an approach for automatic classification of pulsed Terahertz (THz), or T-ray, signals highlighting their potential in biomedical, pharmaceutical and security applications. T-ray classification systems supply a wealth of information about test samples and make possible the discrimination of heterogeneous layers within an object. In this paper, a novel technique involving the use of Auto Regressive (AR) and Auto Regressive Moving Average (ARMA) models on the wavelet transforms of measured T-ray pulse data is presented. Two example applications are examined — the classification of normal human bone (NHB) osteoblasts against human osteosarcoma (HOS) cells and the identification of six different powder samples. A variety of model types and orders are used to generate descriptive features for subsequent classification. Wavelet-based de-noising with soft threshold shrinkage is applied to the measured T-ray signals prior to modeling. For classification, a simple Mahalanobis distance classifier is used. After feature extraction, classification accuracy for cancerous and normal cell types is 93%, whereas for powders, it is 98%.
منابع مشابه
Application of an Additive Self-tuning Controller for Static Synchronous Series Compensator for Damping of Sub-synchronous Resonance Oscillations
In this paper, an additive self-tuning (ST) control scheme is presented for a static synchronous series compensator (SSSC) to improve performance of conventional PI control system for damping sub-synchronous resonance (SSR) oscillations. The active and reactve series compensation are provided by a three-level 24-pulse SSSC and fixed capacitor. The proposed ST controller consists of a pole shift...
متن کاملChange Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering
In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...
متن کاملA Switchgrass-based Bioethanol Supply Chain Network Design Model under Auto-Regressive Moving Average Demand
Switchgrass is known as one of the best second-generation lignocellulosic biomasses for bioethanol production. Designing efficient switchgrass-based bioethanol supply chain (SBSC) is an essential requirement for commercializing the bioethanol production from switchgrass. This paper presents a mixed integer linear programming (MILP) model to design SBSC in which bioethanol demand is under auto-r...
متن کاملNetwork Traffic Prediction Algorithm based on Wavelet Transform
The features of dynamic, noise and instability, make the network traffic eruptive and unstable, and this obstructs the network traffic prediction. In order to figure out its characteristics and developing tendency accurately, the paper proposes a wavelet-transform-based prediction algorithm: Firstly, with the multi-resolution analysis of wavelet transform, the network traffic, which is difficul...
متن کاملTime series forecasting with the WARIMAX-GARCH method
It is well-known that causal forecasting methods that include appropriately chosen Exogenous Variables (EVs) very often present improved forecasting performances over univariate methods. However, in practice, EVs are usually difficult to obtain and in many cases are not available at all. In this paper, a new causal forecasting approach, called Wavelet Auto-Regressive Integrated Moving Average w...
متن کامل